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Re m a r k 6.1. If the contour I’ in relation (6.6) has been chosen as in Example 2, 
then the corr~po~ing infinite system is of exactly the same form as system (2.19) of 
I41 . This system can be investigated by the method proposed in [sl. 

The author is grateful to I. I. Vorovich and N. A. Rostovtsev for remarks. 
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ASYMPTOTIC SOLUTION OF TliE CONTACT 
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Translated by A. Y. 
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The contact problem of impressing a stamp in an elastic la er of finite thickness h 
lying without friction or adhering rigidly to an undeformable oundation is considered. f 
The frictional forces between the stamp and the surface layer are assumed absent, and 
the surface layer outside the stamp is not loaded. The contact domain P between the 
stamp and the layer is assumed simply connected (3 and fixed. 

An asymptotic solution of the above-mentioned problem has been obtained in I’-*1 
under the assumption that the relative thickness of the layer is sufficiently large, i. e. 
the dimensionless parameter X = h / a, a 
lar e. 

1 

= rlz max H,o for any P and Q 6 P , is 

scheme for constructing the asymptotic solution of the mentioned problem under 
the assumption that the relative thickness of the layer is small has been expounded in 
i’l - 

l ) Simple connectedness is assumed just for simplicity. The asymptotic method ex 
;~m~~~for the solution can be utilized even in the case of a multiply connect J 

oun- 

* 
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A more general and convenient scheme for me construction of the asymptotic solu- 
tion of the problem for small relative thickness of the layer is given herein on the basis 
of the main idea in [‘I. The results are presented in the form of simple formulas suit- 
able for practical utilization. 

1. Basic integral equation of the problem, Introduction of P 
dimen,lonle,r prrrmeter chrrrcterlring the amrllnetr of the 
relative layer thlcknenr, As is known (i’3],the above-mentioned problem 
is reduced, by operational calculus methods, to the solution of the integral equation 

(1.1) 
A = G (1 - Y)-l, R = I% - s)” + (11 - Y)” 

in the distribution function of the contact pressures q (p). The function 6 (Q) is the 
settlement of the surface layer points under the stamp, and is determined by the shape 
of the stamp base and the dpgree of its indentation into the layer; G and Y are elas- 
tic constants of the layer; (5, 11) are coordinates of the point P; (5, 3) are coordi- 
nates of the point Q.- 

The kernel of the integral equation (1.1) has the form 

K(t) = ~L(U)J,(Ul)dU 
0 

where Jr, (~)~is the Bessel function, and the function L(U) is 

(I.4 

(a) L(u) = ch 2u - Z 
sh 2u + 2u 

(b) L(u) = 
2K Sll 2U - 4 I‘ 

2xch 2U + I + %2 + 4u2 ’ x=3--v (1.3) 

Here and henceforth, cases (a) and (b) correspond to cases of a layer lying without 
friction or adhering rigidly to an undeformable foundation. 

Furthermore, we shall assume that 

1) The function 6 (Q) is sufficiently smooth in n; 
2) The solution Q (P) of the integral equation (1.1) exists for problems (a) and (b) in 

the class L (52) (the class of functions absolutely summable over the domain), and is 
unique ; 

3) The shrinkage of points of the surface layer y (Q) outside the domain of contact 
!Z belongs to L( Q*) , where S2* is the c omplement of Sz in the whole plane. 
For physically real cases of the problems under consideration the function 8 (Q) 

should be strictly positive in 9 and such mat q (P) > 0 in Q. 
Let us write down some general properties of a function L (u) of the form (1.3). 
The functions L (2) will be odd and meromorphic (the ratio of two quasipolynom- 

ials) in the complex z = u + iv plane; the functions L (z) are real on the v = 0 
axis, have a unique single zero h = 0 , and no poles. A countable set of their com- 
plex zeros z, and poles c,, is located on four branches disposed symmetrically rela- 
tive to the real and imaginary axes. All the z, and 5, are distinct (3, their absolute 

l ) The zeros of the functions L (I) for problem (a) are multiple and pure imaginary, 
i.e. the right and left branches merge into one of the imaginary axes. 
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values increase as n increases. For large n the following simple asymptotic formulas 
hold 

z la= crlnn + ic,n, 5, = d,lnn + id,n (cl, c2, 4, d, = const) (1.4) 

Taking account of all the above, we can represent. L (2) of the form (1.3) as 

O” (z”+6,9 w=dI (z2+yn2) ) 
lim L(z)z-r= A= fi (2)’ (1.5) 

?I==1 
Lo 

tl=l 

6, = -iz,, m = - it, 

Here .z, and 5, are, respectively, the zeros and poles in the u > 0 half-plane. 
It is easy to show that for large values of u the functions L (u) of the form (1.3) 

behave as follows: 

L (u) = 1 + 0 (e-y (1.6) 

Moreover, it can be shown that the estimate 

L(Z)=O(l) for k+ 00 (W 

holds in the complex z -plane on any regular 151 system of contours C, if 

largzl\(l12rt-a andjargz- n: 1 < lj2n _ e; on the imaginary axis (u =O) 

L(Z)=O(Z-l) for IzI+oo (1.8) 

Utilizing (1.5)) (1.7) and (1.8) we can represent the meromorphic functions L (z) 
of the form (1.3) as the sum of their principal parts [‘I 

L(u) = 
f i _ rmSm 

u2+-rma ’ IimL (u)u-r= A =f i $- (I.91 
m=i U-+0 WI=1 

It can be shown that the series (1.9) converges uniformly for all O<u<D< 00. 
The constants s, have the form 

(1.10) 

Let us now turn to the question of the dimension- 
less parameter characterizing the smallness of the 
relative thickness of the layer. 

L az 
6 

0 

Let us note that the dimensionless parameter k 
introduced in 11-31 is suitable only for the charac- 

A teristics of a layer of large relative thickness, becau- 
se the smallness of the relative la er thickness does 
not follow from the smallness of x. 1s parameter in 

c the general case. Hence, the necessity to introduce 
yet another dimensionless geomenic parameter 
results. 

D At the point A of the contour L we draw a nor- 

Fig. 1 
mal (Fig. 1); it intersects the contour L in a num- 
ber of points 13, C, D. Let us measure the length of 
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the normal segments between the point A and the points of intersection. We let .&,. 
denote the smallest possible of the lengths of the mentioned normal segments for any 
points A EL. 

Now let us introduce a new parameter 1 by means of the relationship 

jA = h IInf (ao, po)l-l (i.11) 

where p. is the minimal radius of curvature of the contour L. Let us note d-rat always 
00 > PO for a convex domain Q . 

The parameter JA introduced is suitable only for the characteristics of a layer of rela- 
tively small thickness. 

Let us note that always p > A. The equality holds only when the domain Q is a 
circle. 

2, Properties of the kernel of the integral (1. 1). Nature of 
it: tolution. Let us mention some properties of the kernel K (t) of the form 
(1.2) which are common for both problems under consideration. Using the integral 

a, 

s Jo (ut)du = f (2.1) 
0 

we represent (1.2) as 

K(t) = t-1- F(t) 

F(1)& -L(U)]Jo(ut)du (2.2) 
0 

On the basis of the property (1.6) of the function L (u) presented above, it is easy 
to show that a function F (t) , even in t , will be continuous and continuously differ- 
entiable any number of times for 0 < t < 00. 

If the relationship (1.9) and the integral 

O” uJo b“) du = K. (ab) s ua + b’ 
0 

(2.3) 

are used, then another representation for the kernel K (t) can be obtained 

K(t) = as r?dm~o (+fnlt) (2.4) 
n-=1 

It is not difficult to prove mat the series (2.4) converges uniformly and absolutely 
for all 0~ a\<f\<oo. To do this it is sufficient to utilize the relationships (1.4) and 
(1.11). 

Now let us turn to the question of the nature of the solution of (1.1). Let us rewrite 
it on the basis of (2.2) as 

ss g(P) $ = 2n46(Q) + ;&M’) F(+)dP, Q EQ (2.5) 
P P 
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By assumption, the solution of the integral equation (1.1) or (2.5) exists in L (51). 
Then the function 

(2.6) 

will be continuous and continuously differentiable wrth respect to x and y any number 
of times in $J by virtue of the mentioned properties of F (t) . 

The following results hence follow: 

1) For h + 00 the integral equation (2.5) goes over into the known integral equa- 
tion of the corresponding contact problem for an elastic half-space 

ss q(P)$=2nAb(Q), QEQ 
Q 

(2.7) 

2) The solution of the integral equation (2.5) or (1.1) of the contact problem for a 
layer will be of the same nature as the solution of the integral equation (2.7) for a 
half-space for all nonzero values of the dimensionless parameters k and /I : 

3) If the solution of the integral equation (2.7) is known for given Q and 6 (Q), 
then to find the approximate solution of the integral equations (2.5) or (1.1) for large 
k it is sufficient to approximate the functi0n.F (t) of the form (2.2) by a degenerate 

function; intrinsically speaking, this idea has been used in [l-a1 to obtain asymptotic 
solutions of (1.1) for large A . 

9. Inner Iolutlon of the integral equation (l.l)Afor am811 p 
Instead of the integral equation (1.1) let us consider its equivalent functional equa- 

tion 

Q (a, PI L WW = AW (a, P), Q(a, B) =&~~q(P)eic"e*@a)d~ (3.1) 
Q 

COOD 

i 

2n s s Q (u, &+‘=+fl~)dud@ = 
-TCO-03 

W (u, p) = - 2+ s s a (P) d(~~+WfQ - 2&- s 17 (p) ei(@t+P*)dQ 
Q Q 

0000 

& s s w (4, P)@+-~“)d~P = _ r(Q) in ** 
{ 

-S(Q) inP 

On the basis of (3. l), (3.2), we obtain 

or finally 

(3.2) 

(3.3) 

q(Q) =~[~sa(P)n~(~)dO+~S~(p)~(~)dn] QEfJ (3.4) 
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(3.5) 

For a function M (t) of the form (3.5) it is possible to obtain the expansion 

M(r) = -$ 4n~mKll (U) (3.6) 

just as has been done in Sect. 2 for the kernel K (t). As before, it can be shown that 
the series (3.6) converges absolutely and uniformly for all 0 <e < t < 00. 

Let us consider the geometric locus of points Q E 52 not less than aa E removed 
from the boundary of the domain fi along the normal (see Sect. 1 for definition of the 
quantity U, ). These points evidently occupy a certain domain 6t, C 52. 

Now, on the basis of (3.6) we easily obtain the following estimate for the second in- 
tegral in (3.4) for all points Q E 52, for small values of the parameter p : 

(3.7) 

In deducing the estimate it has also been taken into account that 7 (Q) EL (Q*). 
Therefore, for small p the following asymptotic relationship holds 

Let us designate it the inner solution of the integral equation (1.1) for small CL. 
Let us continue the function 6 (Q) in the domain a*. For example, let 

q(Q) =a(Q) in52 and*(Q) =a*(Q)in Q*. Letusdemandonlythatthe 
function 9 (Q) be absolutely integrable in the whole plane. Then the asymptotic 
equality (3.8) can be rewritten in a form more convenient for practical utilization 

co co 

q(Q) =2$j $ s 9 (PI M (+) dQ + 0 [(;)-“h (- $ Re a,)], (3.9) 
. 

d--o3 

As an illustration, let us consider the case d (Q) z 6 for Q E 52 (a flat stamp). 
Let us describe a circle of radius sd = I[, maxn R around the domain &? and let 
us take the following as the function 1~, (Q) : 

q(Q)=6 for r<a, $(Q)=O for r>o (r = V=l -P V3 (3.iO) 

Then after a number of manipulations, 
means of (3.9): 

we obtain the following inner solution by 

q(Q) = $k- +“[eXP(-$Real)], QEQ, (3.11) 
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Let us note that (3.11) agrees with the degenerate solution for small relative layer 
thickness given in [s] to the accuracy of the expotential component. 

Analogously, for the case 6 (Q) = 0 r’/~’ with Q e Sz (parabolic stamp), we 
obtain the inner solution as 

Q(Q)=% ‘;;i- ( r’ 40,5’)+u[exp(--.ne~,)]. QEQ, (3.12) 

The constant D, in (3.12) is 

Dt = $Iim g,(e)) for u-+0 (3.13) 

The constant 4 in (3.11) - (3.13) is defined by the relationship (1.5). 

4. Construction of a boundary-layer type tolution of the 
integral equation (1.1) for tmrll p in the domain S2 - R, 
Let us rewrite the integral equation (1.1) as 

Now, if we limit ourselves to an examination of the domain Q E 51 - C2, and 
take into account that the function q (Q) E L (!i2 #,), then we will have on the basis 
of (4.1) 

q(P)K(;) dn+oCl/pe~p(-‘~Re~,)]=~~~~(Q) (4.2) 

Q EQ-Q,, l>el>e 

In deducing (4.2) the relationship (2.4) was also taken into account. 
Thus, it is necessary to find the solution of the integral equation (4.2) in the domain 
Q- Q,,,where it should evidently have boundary-layer form, i.e. have a singula- 

rity i”] of the form R-‘/g on the contour L ,and tend rapidly to the inner solution (3.8) 
upon receding deep into the domain from the contour L. 

To construct this boundary layer solution, let us transform to new variables connected 
to the contour L. in (4.2). 

From the 
me length o P 

oint A (& y) E Q - 
this normal be n, and 

B, let us drop a normal on the contour L ; let 
the point of irs intersection with the contour 

B (xl, l/r). On the contour L let us select some point 0 (~0, yJas origin, and let 
us measure the distance s between the points 0 and B along the contour z. We take 
the quantities R and s as the new coordinates of the point A in the curvilinear (n, .S) 
coordinate system. Under the conditions e < 1 and -112 (s ( 1 / 2 (1 is the 
perimeter of the contour L) , only one pair of numbers (n, 3) will correspond to each 
pair of numbers (2, 3) in the domain 5) - Q,,, and conversely. 

The integral equation (4.2) becomes in the (PI, U) coordinare system 



56 v. M. Aleksandrov 

Here 

Furthermore, for simplicity of the exposition we Emit ourselves to the consideration 
of an important particular case (‘1 

(4.5) 

It includes the case of axial symmetry as well as all cases of stamps with flat bases 
(6 (Q) z comb). 

To find the principal term of the asymptotic of the solution of the integral equation 
(4.3) for small fs we let p-x tend to infinity in (4.3) and we find the solution of the 
integral equation thus obtained. Let us note that letting p-1 teud to infinity is equiva- 
lent to rectification of the contour & into an infinite line in the (n, S) coordinate sys- 
tem(“). Itishenceeasytoseethatthebeltdomain O<b<e/p, lci<k/p 
is expanded into a half-plane, the (n, s) coordinate system degeuerates into a rectan- 
gular system! the function cp @; v) turns out to be dependent only on the variable 1), 
i.e. ip (8, YI = tp (81~ 

Taking all this into account, after integrating the inner integral with respect to r 
we represent the integral equation (4.3) as p *-+ i, as 

Equation (4,s) is the integral equation of the problem of the effect of a semi-infinite 
stamp on an elastic strip of finite thickness h. in 111. Therefore, the principal term of 
the asymptotic of the solution of integral equation (4.2) or (1.1) in the domain fJ _ f& 
for small p and condition (4.5) will be a plane boundary layer, determined from the 

can also be studied with slight complications. 
“) It follows from the above that the principal term of the asym totic of the solution 
of the integral equation (4.3) for small p will be independent o P the curvature of the 
qmxx L at any of irs points. However, the fnfhtence of the curvature could be taken 
into account by paying attention to rhe fact that the solution of (4.3) in the neighbor- 
hood of each point of the contour L with coordmate c and radius of curvature p(c) ag- 
rees ~ympm~ca~y for small P with the solution of the corresponding integral equation 
for a stamp of circular planform with radius p(c) if p(c)>0 , and for a stamp which is 
the exterior of a circle of radius p(c) if p(cKO. It can thereby be established that the 
c~;ec;; ; the curvature is of the order of OIAs(c]) on the contour L , where 

c- c. -1 
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Wiener-Hopf integral equation (4.6), (4.7). 
Let us inaoduce yet another boundary layer into the considerations, and let us desig- 

nate it as “outer” in conaast to the previous “inner”. 
The presence of an outer boundary layer can be established in studying the function 

y (Q), the disaibution of surface layer shrinkage in the domain Q*, i.e. outside the 
stamp. Indeed, the function Y (0). takes on some finite values on the contour L of tie 
domain Q and tends rapidly to zero upon receding from the contour L , and the more 
rapidly the smaller the relative layer thickness cr. 

If a scheme and reasoning analogous to that utilized above in consaucting the inner 
boundary layer are applied to determining the outer boundary layer, and if we limit 
ourselves to the same accuracy, then it turns out that the principal part of the outer 
boundary layer is also plane and given by the relationship 

(4.8) 

Here N (t) also has the form of (4.7)) the domain Q,* is obtained by eliminating 
all points distant not less than use, 0 < e < 1 from the contour L along the normal, 
from the domain Q* . 

Let us note that g (b) can be found uniquely from ‘p (fi) in solving the Wiener-Hopf 
integral equation (4.6). 

Let us turn to a study of the question of the limits of applicability of the asymptotic 
equality established above for small p . 

4 w --cF (PI npn P E a - 8, (4.9) 

To do this let us first note what has been principally at the basis of the derivation. 
Namely, the completely obvious physical fact has been utilized that asymptotically 

for small.1 a state of saess in the neighborhood of any one point of the contour L of 
the domain P. should not influence the state of stress in. the neighborhood of any other 
point of the contour L, i.e. asymptotically there should be no mutual interaction bet- 
ween different points of the contour L.. But this mutual influence can be internal 
(through the domain R ) and external (through the domain a*). The value of studying 
the outer boundary layer hence becomes obvious at once. 

It is now clear that it is only possible to assess the limits of applicability of the asymp- 
totic equali 

K in other wor 
(4.9) by the damping rates of the inner and outer boundary layers, i.e. 

s, by their “thickness ‘. 
Let us define the relative boundary layer thickness Hs, H, by means of the expressions 

HI sbl/hh, ig (bi) - q* (bi) I IV &)I-’ = 0.025 

H, - br / h, g (b,) (g (O)]-’ = 0.025 (4 .iO) 

where o* (b) is the principal part of the function 0 (6) as b+ 00. It is evident by 
the method of consaucting the function g (b) which h’as been expounded above that 
the value q* (b,) should agree asymptotically with the corresponding value of me 
interior solution determined by one of the forms (3.8) or (3.9). 

Finally let us outline specificall 
totic equality (4.9). In order that x 

the practical limits of applicability of the asymp- 
ere be no mutual influence between points of the 

contour L asymptotically for small p , it is evidently sufficient that the in?er and 
outer boundary layers be packed within the inner Q - Sl,and outer P* - U,domaim, 
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respectively 
Taking account of the above, we obtain the condition 

approximately defining the desired boundary. 
in the case of a convex domain of contact P , 

F;ru;ndary layer is removed, hence, 
the necessity to introduce an outer 

condition (4.11) takes on in the case the simpler 

Let us summarize. A function q @) satisfying the integral equation (4.6) yields the 
principal part of the asymptotic of the solution of integral equation (1.1) in the domain 

6t- 62, for small P . Formula (3.8) or (3.9) yields the solution of integral equation 
(1.1) for small P in the domain 52,. Upon compliance with (4.11) they merge asymp- 
totically on the boundary of the domain h2, as is clear from the scheme for construct- 
ing the mentioned solutions ( and will be verified below in examples. Therefore, an 
approximate solution of the integral equation (1.1) for small f~ can be obtained in the 
whole domain 52 with the required singularity of the form R-*h on the contour L. 

The technique of computing contact pressures at a given point A E Q reduces to 
the following. If A E Q,this computation is carried out by means of the interior solu- 
tion, if d E Q -- &,then it is necessary to drop a perpendicular to the contour L 
from this point, to determine the length of the normal n, and then to compute the con- 
tact pressures in conformity with (4.9). 

5, Examples. Approximate formula to determine the forcer 
acting on the Itamp, Let us utilize the Koiter idea of approximate factoriza- 
tion to obtain practically acceptable solutions of the Wiener-Hopf integral equation 
(4.6). (4.7). 

Let us approximate the function L (u) defined by one of the formulas (1.3) by the 
expression 

and taking (5.1) into account, we obtain a solution of (4.6), (4. ‘I), and also find g (5) 
in conformity with (4.8). 

Omitting traditional computations, accompanying the Wiener-Hopf method [*I, let 
us present the final expressions for Q (a) and g (&$ 

g(b)=~[$-erfl/-_+ T/i-_k6erf)/-Bb(i-k)J, 

-co<b<O, k= )/i%-~ 

(2) f (b) = Y~J 
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The expressions for the function 8 (b) are not needed later for cases (2) and (3). 
In order to be able to carry out specific calculations, let us indicate the values of 

the constants B and C in the approximation (5.1) for both considered problems. Let 
us select these constants in such a manner that 

U 
lim m - 11 j$+ =O, limdut L+j-- 1 d’ ’ 

[ L’;u) =O I 
for u --, 0 (5.5) 

As is seen from (3.11) and (3.12), this is necessary for the correct matching between 
the boundary layer solution in the domain fi - 9, and the interior solution in the 
domain or (see below apropos of this). We therefore obtain: 

For the first problem 

B = i, cc2 (5.6) 

For the second problem with 

v = 0.3 

a = 1.037, c = 2.540 (5.7) 

Now let us determine the boundary layer thicknesses for cases (5.2) - (5.4) by means 
of (4.10). For the problem (a) we will have 

i) If, = 0.6 Ii, = 1.5, 

and for problem (b) 

i) HI = 0.9 Ha = 0.8, 

2) HI = 0.9, 3) Hz = 1.3 (5.8) 

2) Hs = 1.1, 3) H, = 4.3 (5.9) 

It is interesting to note that there is a zone of negative values for the function g (6) 
for the case f (b) 3-Y . This indicates that slight buckling of the surface of the layer 
near the stamp boundary occurs upon impression of a stamp on a la er of slight rela- 
tive thickness. Such buckling is not observed in contact problems or an elastic half- Y 
space. 

Let us turn to a study of a plane stamp of arbitrary planform (6(Q) E &)_ As has 
been shown in Sect. 3, the interior solution for this case has the form (see 3.11)) 

Q (0) = $+ + 0 (c”“‘), Q EQ, (5.10) 

where for e E: O.(Q) the constant $ equals, respectively for the considered cases 

(a) 3.142, (b) 0.877 (v = 0.3) (5.11) 

The boundary-la 
ionship in (5.2). 1y 

er qpe solution in the domainB - Q, is iven by the first relat- 
aking account of (5.5)) it becomes on the omain boundary a, f 
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(5.12) 

where for e 5-; O.,(Q) the constant &equals, respectively, for the considered problems 

(a) 1.00% (b) 1.037 (v = 0.3) (5.13) 

It is seen from a comparison between (5.10) and (5.12) that the interior solution and 
the boundary-layer type solution match asymptotically for small p. on the domain boun- 
dary R, thereby assuring an approximate determination of the contact pressures in the 
whole domain Q in the complex. 

We find-the approximate boundary of utilization of such a complex by means of(4.11) 
and (4.12). Namely, taking account of (5.8) and (5.9), we obtain P < 0.91 for a 
stamp of arbitrary planform. p < 1.67 for a stamp of convex planform in the case of 
problem (a), and (L < +.ii for a stamp of arbitrary or convex planform in the case of 
problem (b), where e = O.(9). was used in the calculations. 

Let us examine the case of a plane stamp of elliptic planform in more detail (f2 is 
an ellipse with semi-axes a and b, 0 > b). 

Taking into account that the minimal rgdius of curvature of the ellipse is ,J (i - es), 
where 8 is the eccentricity, we obtain the following relation between the parameters 
&and p: 

p = A (i - es)-’ (5.14) 

Taking into account that n = b - y for r - Q, , and n = (I - z for P = 0 , on 
the basis of the first formula in (5.2) and of (5.10) we obtain the following approximate 
relationships to compute the contact pressures on the axes of the elliptical domain Q: 

q(z.o~=~{erf(R(ahi))Ih+(n(~~~.))(/I~~~ [-!*-I] f5,5)* 

*(O, V)=${srr(B(b,y)~+( n(QYtxP [-B(b;y)]} * 

For a plane stamp of circular planform we will have 

From the statics conditions for the stamp we now find the connection between the 
force P*acting on the plane circular stamp, and its shrinkage d 

(5.17) 

Let us note that it is difficult to obtain an analogous formula for the force P in the 
case of a plane stamp of arbitrary (particularly elliptical) planform because of the lack 
of a single analytical expression for the contact pressures in the whole contact domain 

n analogous to (5.16). Co~~uen~y, we elucidate below an approximate method 
~~~~rrnining the force P acting, for small J.J , on a plane stamp of arbitrary plan- 

* 
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Taking account of (5.10) and the first formula in (5.2), let us represent the asympto- 
tic solutron, for small p I for a plane stamp of arbitrary planform as 

1/meerp(-M/h), Q~a-a‘ I (6.18) 

We now obtain the following approximate relationship for the force P acting on the 
stamp: 

where S is the area of the domain U, i the perimeter of the contour L, rd e is tak- 
en equal to one. Letting the upper limit of the integral in (5.19) be infil:i 1y asympto- 
tically for small j4 , and evaluating the integral, we finally obtain 

(5.243 

Here rhe consnbnt p for the considered problems is, respectively 

(a) 0.2071, (b) 0.1653 (5.21) 

It is easy to note that the approximate formula (5.20) yields the first two members 
of the asymptotic of (5.17) for small L for the case of a circular stam Results are 
given in the table for a numerical comparison between (5.20) and (5. 7) for the case P’ 
of a circular stamp. For convenience, we have used the notation X = P (46&)-l. 
Presented in the last column of the Table are appropriate values of the quantity x ob- 
tained in I*] by completely different means 

A 

Table 

(5.17) I (5.20) I [‘I 

The approximate formula (5.20) becomes for the case of a stamp of elliptical plan- 
form: 

(5.22 j 

where E (e) is the complete elliptic integral of the second kind. 
Let us study the case of a parabolic stamp of circular planform 

6 (4 = 6 -1 yrsJaa = (6 - y) + 2yAb - yA.s.‘b’ (5.23) 
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On the basis of (3.11) and (3.12) the interior solution for this case is 

(5.24) 

We form the solution of boundary-layer type in the domain 0 - 8, by means of 
the first formula in(5.2), and of (5.3), (5.4), (5.23). We have 

As has already been remarked above, compliance with condition (5.5) assures the 
correct asymptotic matching between the interior and boundary layer solutions based 
on the approximation (5.1). Indeed, if the relationship 

A i -- E- 4B¶ --I (5.26) 

whose validi 
r 

resulrs from (5.5), is taken into account, then the principal term in the 
asymptotic ( .25) for small A will coincide with (5.24) on the boundary 0, as is 
easil seen. 

It g ence follows that the as 
i 

mptotic solution, for small A , of the problem for a 
circular parabolic stamp can e represented by a single analytical expression in the 
whole contact domain Q , in the form of (5.25). 

For the parabolic stamp case we now obtain an asymptotic solution for small k which 
vanishes on the contour of the domain n, i.e. for r s 4. On the basis of (5.25), we 
find 

p(r)=$(er[(B(a~r))%[ +$+I(L+)i(+)1/1)(2($)lh_$)_ &I+ 

+( “~~~“)““xp(-B~)(1+f+~~)) (5.27) 

under the condition 

(5.23) 

which can be utilized to determine the radius u of the contact domain n for given 
6 and Y* 

For the force P acting on a parabolic stamp we obtain 
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We determine the limits of applicability of (5.25), (5.27) - (5.29) in A in conformi- 
ty with (4.12) and (5.8). (5.9). For e = O.(9) we will have 
lems. 

A < Cr.77 for both prob- 

Finally, we obtain the asymptotic solution for small A , for an oblique circular stamp. 
Let d (Q) = CUU-’ COST then as is known, ~(Q)=q&)cos~ where r and 0 are polar 
coordinates. The function qr (r) can be obtained by differentiation of the right side of 

(5.27) ( [IO], Sect. 1) with respect to r . It is here necessary only to replace - +-s 
by a. We thereby find 

The value of the moment M applied to an oblique circular stamp coincides, as can 
be shown, with the value of the force P defined by (5.29) to the accuracy of a sign. 
It is hence necessary just to replace - 2Ya-1 by 6. 
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2. 

3. 
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